58 research outputs found

    Physiological models of body composition and human obesity

    Get PDF
    Correction to Levitt DG, Heymsfield SB, Pierson Jr RN, Shapses SA, Kral JG: Physiological models of body composition and human obesity. Nutrition & Metabolism 2007, 4:1

    25-Hydroxyvitamin D and Vitamin D Binding Protein Levels in Patients With Primary Hyperparathyroidism Before and After Parathyroidectomy

    Get PDF
    Objective: To evaluate vitamin D binding protein and free 25-hydroxyvitamin D [25(OH)D] levels in healthy controls compared to primary hyperparathyroidism (PHPT) patients, and to examine PHPT before and after surgery.Methods: Seventy-five PHPT patients and 75 healthy age, gender, and body mass index (BMI) -matched control subjects were examined. In addition, 25 PHPT patients underwent parathyroidectomy and had a 3-month follow up visit. Levels of total and free 25(OH)D, DBP, and intact parathyroid hormone (iPTH) were determined before and 3 months after surgery.Results: There was no significant difference in age and BMI between PHPT patients and controls. Levels of 25(OH)D and DBP were lower in PHPT patients compared to controls (p < 0.01). There was no significant difference in calculated free and bioavailable 25(OH)D levels between PHPT patients and controls. Calcium and iPTH levels decreased to normal but DBP and DBP-bound-25(OH)D increased (P < 0.001) after parathyroidectomy. Levels of DBP were inversely correlated with iPTH (r = βˆ’0.406, P < 0.001) and calcium levels (r = βˆ’0.423, P < 0.001).Conclusion: Serum DBP levels were lower in patients with PHPT and parathyroidectomy restored DBP levels. We suggest that lower DBP levels is one of contributing mechanisms of low total 25(OH)D in PTHP patients and the total 25(OH)D levels might not reflect true vitamin D status in PHPT patients

    Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although there is considerable evidence for a loss of bone mass with weight loss, the few human studies on the relationship between weight cycling and bone mass or density have differing results. Further, very few studies assessed the role of dietary composition on bone mass during weight cycling. The primary objective of this study was to determine if a diet high in amylase-resistant starch (RS<sub>2</sub>), which has been shown to increase absorption and balance of dietary minerals, can prevent or reduce loss of bone mass during weight cycling.</p> <p>Methods</p> <p>Female Sprague-Dawley (SD) rats (n = 84, age = 20 weeks) were randomly assigned to one of 6 treatment groups with 14 rats per group using a 2 Γ— 3 experimental design with 2 diets and 3 weight cycling protocols. Rats were fed calcium-deficient diets without RS<sub>2 </sub>(controls) or diets high in RS<sub>2 </sub>(18% by weight) throughout the 21-week study. The weight cycling protocols were weight maintenance/gain with no weight cycling, 1 round of weight cycling, or 2 rounds of weight cycling. After the rats were euthanized bone mineral density (BMD) and bone mineral content (BMC) of femur were measured by dual energy X-ray absorptiometry, and concentrations of calcium, copper, iron, magnesium, manganese, and zinc in femur and lumbar vertebrae were determined by atomic absorption spectrophotometry.</p> <p>Results</p> <p>Rats undergoing weight cycling had lower femur BMC (p < 0.05) and marginally lower BMD (p = 0.09) than rats not undergoing weight cycling. In comparison to controls, rats fed RS<sub>2 </sub>had higher femur BMD (p < 0.01) and BMC (p < 0.05), as well as higher values for BMD and BMC measured at the distal end (p < 0.001 and p < 0.01) and femoral neck (p < 0.01 and p < 0.05). Consistent with these findings, RS<sub>2</sub>-fed rats also had higher femur calcium (p < 0.05) and magnesium (p < 0.0001) concentrations. They also had higher lumbar vertebrae calcium (p < 0.05) and magnesium (p < 0.05) concentrations.</p> <p>Conclusion</p> <p>Weight cycling reduces bone mass. A diet high in RS<sub>2 </sub>can minimize loss of bone mass during weight cycling and may increase bone mass in the absence of weight cycling.</p

    Variable bone fragility associated with an Amish COL1A2 variant and a knock-in mouse model

    Get PDF
    Osteogenesis imperfecta (OI) is a heritable form of bone fragility typically associated with a dominant COL1A1 or COL1A2 mutation. Variable phenotype for OI patients with identical collagen mutations is well established, but phenotype variability is described using the qualitative Sillence classification. Patterning a new OI mouse model on a specific collagen mutation therefore has been hindered by the absence of an appropriate kindred with extensive quantitative phenotype data. We benefited from the large sibships of the Old Order Amish (OOA) to define a wide range of OI phenotypes in 64 individuals with the identical COL1A2 mutation. Stratification of carrier spine (L1–4) areal bone mineral density (aBMD) Z -scores demonstrated that 73% had moderate to severe disease (less than βˆ’2), 23% had mild disease (βˆ’1 to βˆ’2), and 4% were in the unaffected range (greater than βˆ’1). A line of knock-in mice was patterned on the OOA mutation. Bone phenotype was evaluated in four F 1 lines of knock-in mice that each shared approximately 50% of their genetic background. Consistent with the human pedigree, these mice had reduced body mass, aBMD, and bone strength. Whole-bone fracture susceptibility was influenced by individual genomic factors that were reflected in size, shape, and possibly bone metabolic regulation. The results indicate that the G610C OI (Amish) knock-in mouse is a novel translational model to identify modifying genes that influence phenotype and for testing potential therapies for OI. Β© 2010 American Society for Bone and Mineral ResearchPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65040/1/90720_ftp.pd

    Vitamin D and Prevention of Cardiovascular Disease and Diabetes

    No full text

    Student resources: Alternatives to handbook 456

    No full text

    Proteoglycans in the growth plate

    No full text
    • …
    corecore